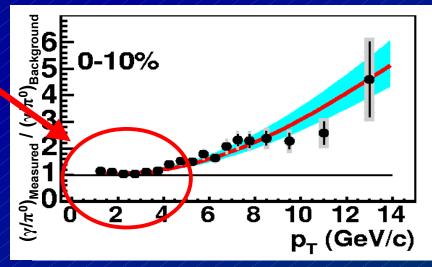
Measurement of photons via conversion pairs with PHENIX at RHIC

- Torsten Dahms Stony Brook University
HotQuarks 2006 – May 18, 2006

Outline

- Motivation possibility to measure photons at low p_T
- Technique photon conversions in beam pipe
 - Invariant mass spectra of e⁺e⁻ pairs
 - Conversion pair properties
 - Extraction of conversion pairs
 - Reconstruct π^0 with this "tagged" photon sample
 - Comparison with simulated hadronic photon spectrum
- Summary

Direct Photons


- Carry information about initial temperature
- Do not interact strongly

 unaffected by final state effects
- Emitted from QGP like black body radiation
- Production mechanisms:
 - quark-gluon Compton scattering: $qg \rightarrow \gamma q$
 - quark-antiquark annihilation: $q\overline{q} \rightarrow \gamma g$
 - Bremsstrahlung
- Other sources of direct photons are initial hard scattering processes

Measurements of direct photons in heavy ion collisions

- Thermal photons predicted to dominate photon spectrum at 1-3 GeV/c
- Direct measurement of photons in this energy region impaired by:
 - Neutral hadron contamination
 - Energy resolution in π^0 reconstruction

S.S. Adler et al., Phys. Rev. Lett. 94, 232301 (2005)

The idea: photon conversions

- Clean photon sample: e⁺e⁻ pairs from beampipe conversion
- Why?
 clear photon identification
 Very good momentum resolution of charged tracks at low p_T
- Procedure
 - Identify conversion photons in the beampipe
 - Tag π^0 by pairing electron pairs from conversions with photons in EMCal
 - Do the same in simulations
- Double Ratio: efficiencies and acceptance corrections cancel out

SIMULATION

Double ratio: technique and advantages

 $\varepsilon_{\text{pair}} = e^+e^-$ pair efficiency

a_{pair} = e⁺e⁻ pair acceptance

f = conditional probability of having a photon in the acceptance, once you already have the ete pair in the acceptance

$$N_{\gamma}^{\text{incl}}(p_{T}) = \varepsilon_{\text{pair}} a_{\text{pair}} \gamma^{\text{incl}}(p_{T})$$

$$N_{\gamma}^{\pi^{0} \text{ tag}}(p_{T}) = \varepsilon_{\text{pair}} a_{\text{pair}} \varepsilon_{\gamma} f \gamma^{\pi^{0}}(p_{T})$$

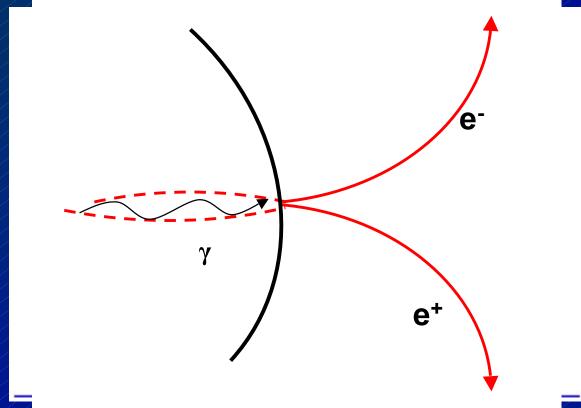
$$N_{\gamma}^{\pi^0 \text{ tag}}(p_T) = \varepsilon_{\text{pair}} a_{\text{pair}} \varepsilon_{\gamma} \gamma^{\pi^0}(p_T)$$

$$N_{\gamma}^{\text{hadron}}(p_{T}) = \alpha_{\text{pair}} \gamma^{\text{hadr}}(p_{T})$$

$$N_{\gamma}^{\pi^{0} \text{ tag}}(p_{T}) = a_{\text{pair}} f \gamma^{\pi^{0}}(p_{T})$$

$$\varepsilon_{\gamma} = \gamma$$
 efficiency

$$\frac{\left(N_{\gamma}^{\text{incl}}\left(p_{T}\right)/N_{\gamma}^{\pi^{0}\text{tag}}\right)_{\text{data}}}{\left(N_{\gamma}^{\text{hadr}}\left(p_{T}\right)/N_{\gamma}^{\pi^{0}\text{tag}}\right)_{\text{sim}}} = \frac{\gamma_{\text{incl}}}{\epsilon_{\gamma}\gamma_{\text{hadr}}}$$


DOUBLE RATIO

$$\Rightarrow \frac{\gamma_{\text{incl}}}{\gamma_{\text{hadr}}} = \epsilon_{\gamma} \frac{\left(N_{\gamma}^{\text{incl}}(p_{T})/N_{\gamma}^{\pi^{0} \text{tag}}\right)_{\text{data}}}{\left(N_{\gamma}^{\text{hadr}}(p_{T})/N_{\gamma}^{\pi^{0} \text{tag}}\right)_{\text{sim}}}$$

Torsten Dahms - Stony Brook University

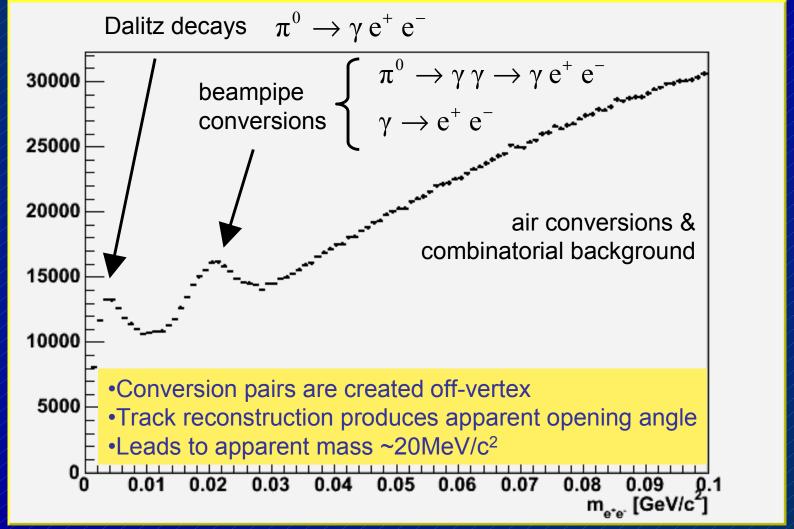
everything cancels out except for $\varepsilon_{\nu} \sim 98\%$ → minimal systematics

The PHENIX experiment

•electrons:

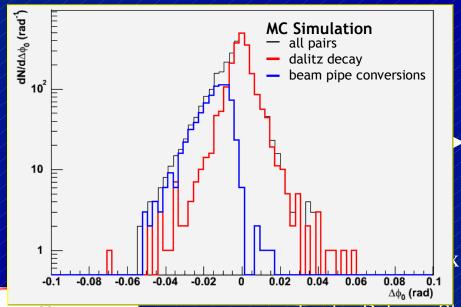
- momentum reconstruction (1% resolution)
- particle ID: RICH (loose cuts because clean signature of conversion peak)
- •same or opposite arms: different pT acceptance
- •photons: EmCal (loose cuts →high efficiency ~ 98%)

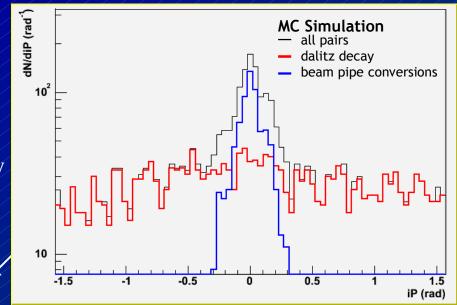
track reconstruction assumes vertex in the interaction point


→ conversion at radius r≠0: e+e- pairs 'acquire' an opening angle

→ they acquire an invariant mass m = ∫ B dl ~ r > 0

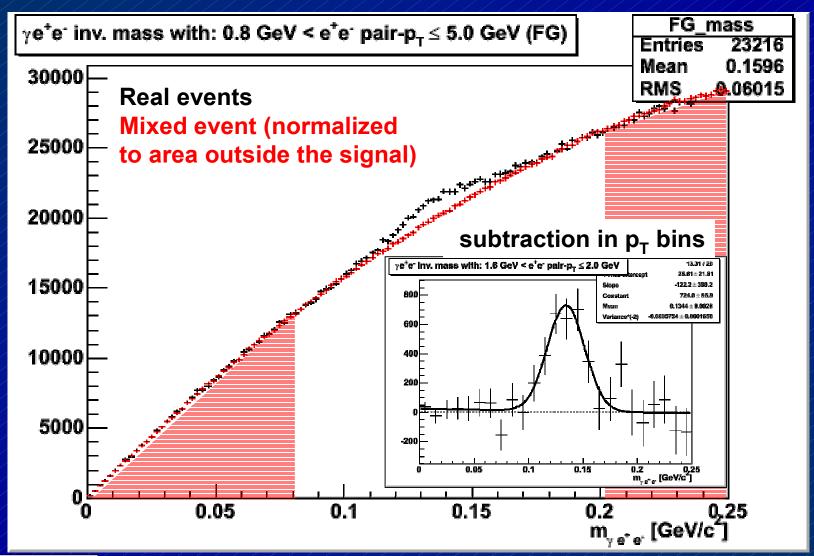
if r=4 cm (beampipe) m =20 MeV


Invariant e⁺e⁻ mass spectrum of Run 4 Au+Au: $\sqrt{s_{NN}} = 200 \text{ GeV}$

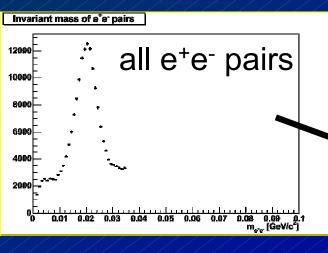


Pair properties

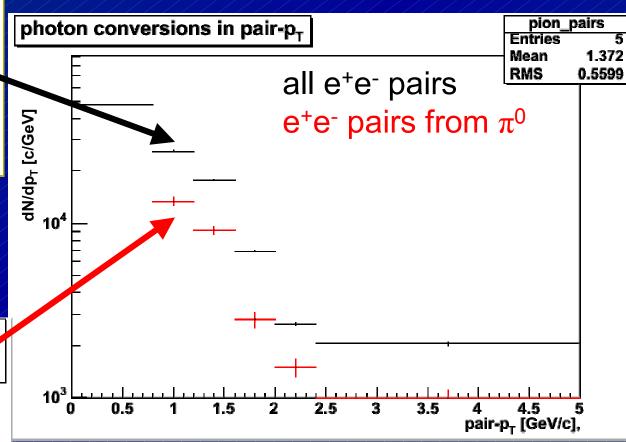
- Dalitz decays have a real opening angle due to the π^0 mass
- Conversion pairs have small intrinsic opening angle
 - magnetic field produces opening of the pair in azimuth direction $\Delta \varphi_0 = \varphi_0(e^-) \varphi_0(e^+) < 0$
 - orientation perpendicular to the magnetic field



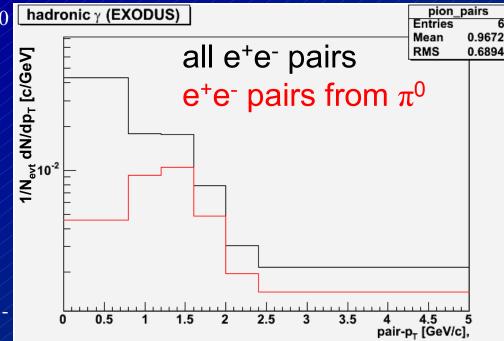
Beam pipe conversions



π⁰ signal extraction



$N_{\gamma}^{\text{incl}}(p_{T})$ and $N_{\gamma}^{\pi^0 \text{ tag}}(p_{T})$



Simulations: $N_{\gamma}^{hadr}(p_T)$ and $N_{\gamma}^{\pi^0 tag}(p_T)$

- Inclusive photon spectrum
 - $-\pi^0$, $\eta \rightarrow \gamma e^+e^-$
 - π^0 parameterization from measured data
 - η from m_T scaling, yield normalized at high p_T (0.45 from measurement)
 - Use Dalitz decay ($\pi^0 \rightarrow \gamma \gamma \sim \pi^0 \rightarrow \gamma \gamma^* \rightarrow \gamma e^+ e^-$ for $p_T > 0.8 \text{ GeV/c}$)
- All e^+e^- (from π^0 , η) in the acceptance $\rightarrow p_T$ spectrum of e^+e^-
- If γ from π^0 is also in acceptance
 - $\rightarrow p_T$ spectrum of e⁺e⁻ from π^0

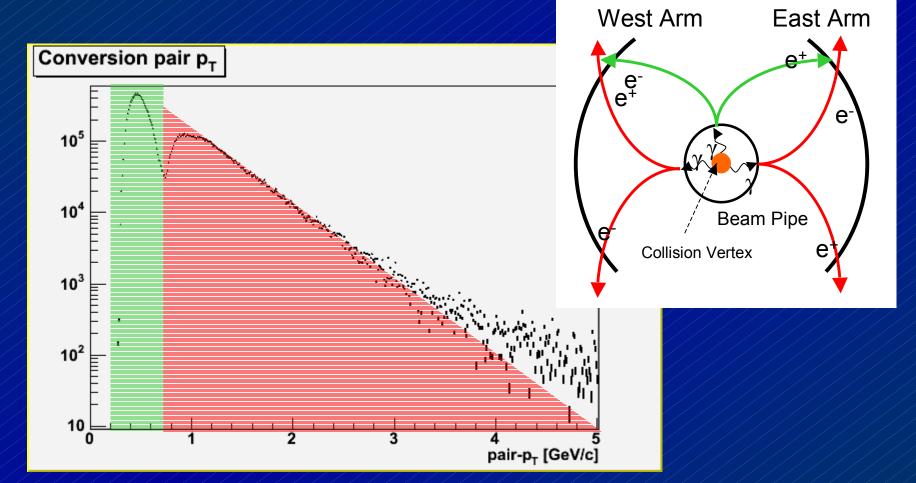
Torsten Dahms -

$(N_{\gamma}^{incl}(p_T)/N_{\gamma}^{\pi^0 tag}(p_T))/(N_{\gamma}^{hadr}(p_T)/N_{\gamma}^{\pi^0 tag}(p_T))$

Systematic uncertainties:

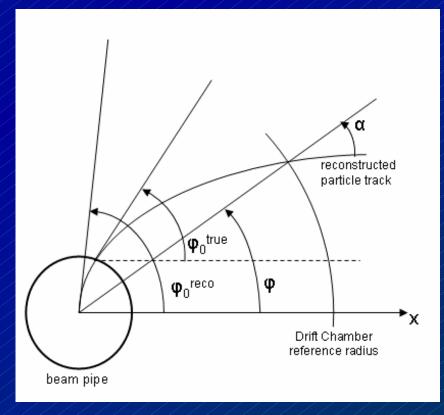
- conversion background 6%
- •π⁰ background 20%
- reconstruction efficiency 3%
- agreement of conditional acceptance 10%
- → total: ~25%

Summary

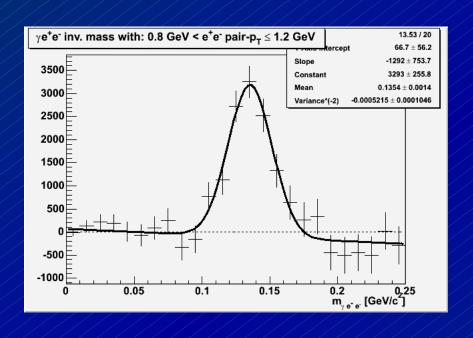

- A new method to measure direct photons has been present
- We can extract a clear photon conversion signal from beam pipe conversions
- We successfully reconstruct π^0
- Need to reduce systematic errors

Backup

Conversion pair-pT distribution



- In principle we reconstruct photons down to $p_T \sim 400 \text{ MeV/c}$
- The π^0 reconstruction reaches limit at 800 MeV/c due to acceptance effects

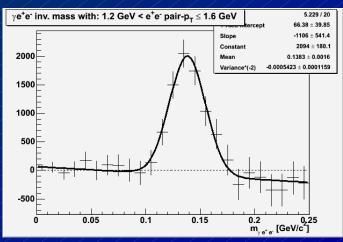

Beam Pipe Conversions

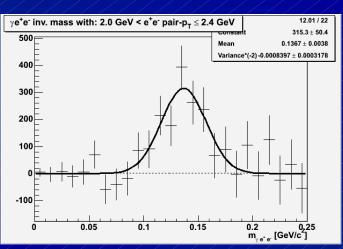
- Track reconstruction relies on Bdl
- $\int_{r} Bdl < \int_{0} Bdl$ $m_{inv} = \sqrt{2} \langle p \rangle \sin(\vartheta)$
- Pair obtains additional opening angle
- Pair gets mass > 0
- Inv. Mass proportional to distance from collision vertex
- conversion peak shifts
 w. r. t. to Dalitz decays

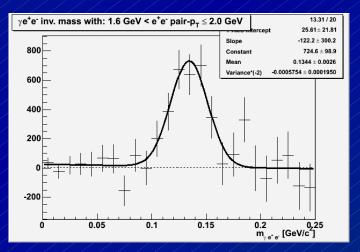
Subtracted inv. mass spectra

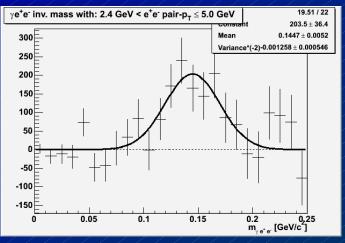
• e⁺e⁻ pair-pT bins [GeV/c]:

$$0.8 < p_T \le 1.2$$

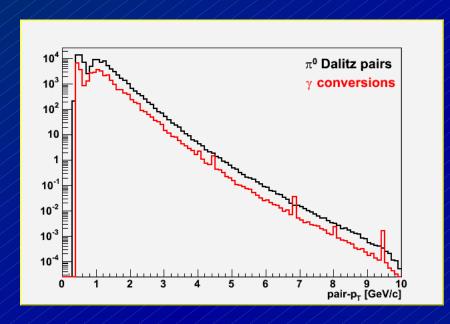

$$1.2 < p_T \le 1.6$$

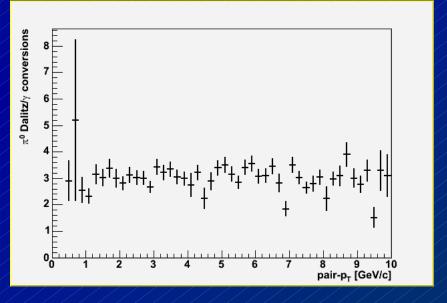

$$1.6 < p_T \le 2.0$$


$$2.0 < p_T \le 2.4$$

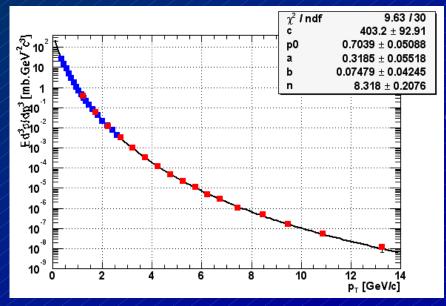

$$2.4 < p_T \le 5.0$$

Subtracted inv. mass spectra





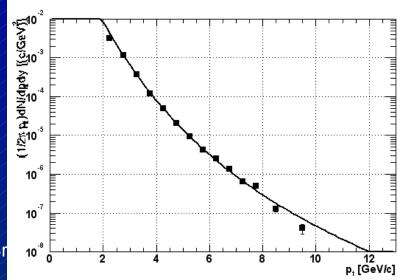
Comparison: Dalitz - Conversions



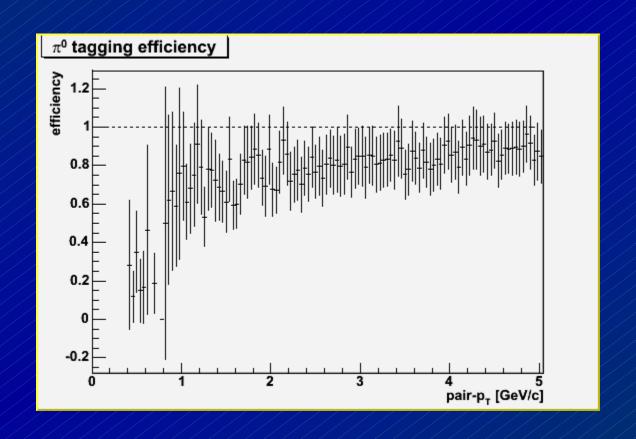
Cocktail ingredients (pp): π^0

- most important: get the π^0 right (>80 %), assumption: $\pi^0 = (\pi^+ + \pi^-)/2$
- parameterize PHENIX pion data:

$$E\frac{d^{3}\sigma}{d^{3}p} = \frac{c}{\left(\exp(-ap_{T} - bp_{T}^{2}) + \frac{p_{T}}{p_{0}}\right)^{n}}$$


most relevant: the η meson (Dalitz & conversion)

- also considered: ρ , ω , η' , ϕ
- use mT scaling for the spectral shape,
 i.e.


$$p_T \rightarrow \sqrt{p_T^2 + m_{meson}^2 - m_\pi^2}$$

• normalization from meson/ π^0 at high pT as measured (e.g. η/π^0 = 0.45±0.10)

Tagging efficiency

